Decreasing CB1 receptor signaling in Kupffer cells improves insulin sensitivity in obese mice
نویسندگان
چکیده
OBJECTIVE Obesity-induced accumulation of ectopic fat in the liver is thought to contribute to the development of insulin resistance, and increased activity of hepatic CB1R has been shown to promote both processes. However, lipid accumulation in liver can be experimentally dissociated from insulin resistance under certain conditions, suggesting the involvement of additional mechanisms. Obesity is also associated with pro-inflammatory changes which, in turn, can promote insulin resistance. Kupffer cells (KCs), the liver's resident macrophages, are the major source of pro-inflammatory cytokines in the liver, such as TNF-α, which has been shown to inhibit insulin signaling in multiple cell types, including hepatocytes. Here, we sought to identify the role of CB1R in KCs in obesity-induced hepatic insulin resistance. METHODS We used intravenously administered β-D-glucan-encapsulated siRNA to knock-down CB1R gene expression selectively in KCs. RESULTS We demonstrate that a robust knock-down of the expression of Cnr1, the gene encoding CB1R, results in improved glucose tolerance and insulin sensitivity in diet-induced obese mice, without affecting hepatic lipid content or body weight. Moreover, Cnr1 knock-down in KCs was associated with a shift from pro-inflammatory M1 to anti-inflammatory M2 cytokine profile and improved insulin signaling as reflected by increased insulin-induced Akt phosphorylation. CONCLUSION These findings suggest that CB1R expressed in KCs plays a critical role in obesity-related hepatic insulin resistance via a pro-inflammatory mechanism.
منابع مشابه
Role of adiponectin in the metabolic effects of cannabinoid type 1 receptor blockade in mice with diet-induced obesity.
The adipocyte-derived hormone adiponectin promotes fatty acid oxidation and improves insulin sensitivity and thus plays a key role in the regulation of lipid and glucose metabolism and energy homeostasis. Chronic cannabinoid type 1 (CB1) receptor blockade also increases lipid oxidation and improves insulin sensitivity in obese individuals or animals, resulting in reduced cardiometabolic risk. C...
متن کاملLoss of Kupffer cells in diet-induced obesity is associated with increased hepatic steatosis, STAT3 signaling, and further decreases in insulin signaling.
While adipose tissue-associated macrophages contribute to development of chronic inflammation and insulin resistance of obesity, little is known about the role of hepatic Kupffer cells in this environment. Here we address the impact of Kupffer cell ablation using clodronate-encapsulated liposome depletion in a diet-induced obese (DIO) and insulin resistant mouse model. Hepatic expression of mac...
متن کاملMechanisms underlying restoration of hepatic insulin sensitivity with CB1 antagonism in the obese dog model
Visceral fat has long been associated with the development of insulin resistance. Although the mechanism is not well understood, it has been suggested that an increase in this fat depot results in an elevation in portal vein levels of free fatty acids and/or adipokines, adversely affecting hepatic glucose production. Overactivity of the endocannabinoid system is closely related to abdominal obe...
متن کاملGenome-wide expression profiling revealed peripheral effects of cannabinoid receptor 1 inverse agonists in improving insulin sensitivity and metabolic parameters.
Inhibition of cannabinoid receptor 1 (CB1) has shown efficacy in reducing body weight and improving metabolic parameters, with the effects correlating with target engagement in the brain. The peripheral effects of inhibiting the CB1 receptor has been appreciated through studies in diet-induced obese and liver-specific CB1 knockout mice. In this article, we systematically investigated gene expre...
متن کاملThe L-4F mimetic peptide prevents insulin resistance through increased levels of HO-1, pAMPK, and pAKT in obese mice*1
We examined mechanisms by which L-4F reduces obesity and diabetes in obese (ob) diabetic mice. We hypothesized that L-4F reduces adiposity via increased pAMPK, pAKT, HO-1, and increased insulin receptor phosphorylation in ob mice. Obese and lean mice were divided into five groups: lean, lean-L-4F-treated, ob, ob-L-4F-treated, and ob-L-4F-LY294002. Food intake, insulin, glucose adipocyte stem ce...
متن کامل